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Cost Estimating

*  “How much will it cost?”
Whyis it important
— ”"Am | in the right ball park range?” Get closer to
accurate estimate

— Keep one from making a big mistake, such as
under estimating

» NASA’s estimated cost overrun
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Formal Analogy and Bayesian Models are a Natural Next

Step in the Evolution Cost Modeling and Analysis
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Evolution of Model Based Estimation Methods

. . 1960s 1970s 1980s 1990s 2000s Today
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Why explore alternative modeling methods?

« For most of our history the cost community has relied upon regression type modeling
methods
— Regression method have the underlying assumption of
» clean and complete data with large sample sizes
— Cost data suffers from sparseness, noise, and small sample sizes
— There are alternative methods that handle these conditions better then regression

 New cost method is built around a spectral clustering algorithm that can be used to estimate
software size and effort that is effective for

— small sample sizes
— noisy data
— and uses high level systems information (Symbolic Data)
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Data — Missions

 Qver 60 data total

e Cluster Analysis:
— 34 missions

* Regression Analysis:

— 37 Missions

« Data:

— NASA 93 - Historical NASA data
originally collected for ISS (1985-
1990) and extended for NASA IV&V
(2004-2007)

— NASA software inventory
— Jairus 30+years in SW data collection

March 29, 2017
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Mission ASCoT Regression
Cassini >
Contour x
Dawn x x
Dieep Impact = x
DS1 x x
Genesis x x
Numb GLL >
‘;;;’;ﬂ-ea,;lzf “\‘“’_“b‘l”' of JUNO x X
Data Item Missions LADEE =
(Current- |70 AT =
2017) hars Odyssey >
. Maven x
Total development effort in work months 36 28 x =
MRO > >
Flight Software Development Cost 3 30 NEAR x x
New Horizons > >
Flight System Development Cost 37 30 OSS REX = =
Van Allen Probe (RESF) x x
Logical Lines of code (LOC) © x
x
Delivered LOC 49 36 K x _
S X X
Inherited LOC (Reused plus Modified reused » x
. 43 36 AT
lines) Aqua
COCOMO modeT inputs (See Appendix A for EOL
the parameter definitions) - Translated from sl x
CADRe which has SEER model inputs 19 19 FeTEvTS =
because the SEER data items are very sparse in GEOTAIL
CADRE GLAST _ _
GLORY X X
System parameters * (See Appendix B parameter GOES R x
it GPM Core X X
Mission Type (deep-space, earth-moon, rover- 19 2 I‘é’":"i x :
lander, observatory) IRIS
. LOCROSS
Multiple element (probe, etc.) 49 39 LOCM
LRO > >
Number of Instruments 49 39 NOAA-N-Prime
NusSt x x
Number of Deployables 49 39 e - -
Flight Computer Redundancy (Dual Warm, 129 2 OCo 2 2
Dual Cold, Single String)
Software Reuse (Low, Medium, High) 41 36 = 1
- - X
Software Size (Small, Medium, Large, Very " % %
Large = x
x
X
X
x x
X X
MSL x x
Insight X X
Phoenix x x
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System Descriptor Details (Example)

« Systems Level
Descriptors used as
symbolic data input

— Category
derived from the
count/cost #'s
(i.e. small,
medium, large,
etc...)
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Software Delivered Code

Values Description E pl
Small Delivered logical lines of code is < 50 KSLOC Small earth orbiters
Medium Delivered logical lines of code is < 50 KSLOC and < 120 KSLOC LRO, Kepler
Large Delivered logical lines of code is < 120 KSLOC and < 220 KSLOC  [LCROSS, SMAP, Phoenix
Very Large |Delivered logical lines of code is >220 KSLOC Rovers
Inheritance
Values Description pl
Low to None Total Inherited code, including modified code is < 10% of delivered MER, TIMED, LRO
code.
Low Total Inherited code, including modified code is between 10% to Deep Impact. New Horizons
20% of delivered code. pimpact,
" - - — T os 209 >
Medium Total !nhented code, including modified code is >=20% and < 50% Messenger, MRO
of delivered code.
T Inheri includi ifi i = 509 %
High otal _n erited code, including modified code is >=50% and < 80% JUNO, SDO, GPM core
of delivered code.
. Total Inherited code, including modified code is a minimum of 80% |MAVEN, Grail, NOAA-N-
Very High . .
of delivered code. Prime
Total Mission cost
Values Description Example
Total Missi t includi ti in FY15 doll is > $120M
Small ota |55|onAC(A)s including operations in ollarsis>$ Wise, small earth orbiters
and < $220 million
. Total Mission cost including operations in FY15 dollars is > $220 . .
Medium L o Discovery class missions
million and < $600 million
Large Total Mission cost including operations in FY15 dollars is > $600 New Frontiers class
g million and < $1.1 billion missions
Total Missi includi i in FY1 Il is>S51.1
Very Large otal Mission cost including operations in FY15 dollars is > $ Large assigned mission, MSL

billion
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Data — Mission Descriptors
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Categorical

Software Size
Very
Type #Rec. Low to Low Med | High | Very High
None
Earth/Lunar
Orbiter 22 3 13 6 ] Medium
Observatory 6 1 5 0 0 Medium
Deep Space 16 2 4 7 3 Large
In Situ 5 0 1 2 2 Large
. Inheritance
Mission
Type #Rec. | Ve Low High | Y7 | Mea.
to None Low | Med High
Earth/Lunar B
Orbiter 18 4 0 4 4 High
Observatory 5 0 1 2 1 Low
Deep Space 15 2 3 2 3 High
Very
In Situ 5 2 1 0 1 Low/
None
Mission Flight Computer Redundancy
Type " Dual- Dual-
#Rec. Single String String
String Cold Warm Median
Earth/Lunar Single
Orbiter 22 14 8 0 String
Observatory 6 1 5 0 Dual String
Dual String
Deep Space 16 1 13 2 Cold
i Dual String
In Situ 5 1 0 4 Warm
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Numerical

Mission - EFFORT (months)

Type Records Median S.D. Avg. Range
Barth/Lunar | 5, 584 | 354 | 651 | 100-1,190
Orbiter
Observatory 5 492 631 742 233-1,830
Deep Space 17 637 375 686 48 - 1,436
In Situ 5 1,080 555 1,232 634 1,888

Mission Logical Delivered LOC

Type #Rec. | Median §.D. Avg. Range
Earth/Lunar
Orbiter 22 96,000 41,432 | 101,821 | 12,000- 170,000
Observatory 5 107,000 95,548 23,000 | 23,000 - 280,000
Deep Space 17 122,000 75,431 24,000 | 24,000 - 289,900
In Situ 5 205,000 | 145334 | 94,300 94,300 - 475,000

Productivity (Logical Del/month)

Type Re;:r ds Median S.D. Avg. Range
Earth/Lunar
Orbiter 22 191 214 260 65 — 823
Observatory 5 244 192 238 46 — 460
Deep Space 17 208 168 262 37-615
In Situ 5 249 81 212 87 - 292
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Introduction to NASA ASCoT

«  NASA Analogy Software Costing Tool (ASCoT)
* The purpose of the model is to
— Supplement current estimation capabilities
— Be effective in the very early lifecycle when our knowledge is fuzzy
 uses high level systems information (Symbolic Data)
— Be usable by Cost Estimators, Software Engineers and Systems Engineers

« The NASA Software CER Development Task is funded by the NASA HQ Strategic Investment
Division to develop a software cost model that

— Can be used in the early lifecycle
— Can be used effectively by non-software specialists
— Uses data from NASA in-house built and funded software “projects”
« Supplement to current modeling and bottom up methods not a replacement
— Acceptable for use with both the cost and software communities

March 29t 2017 © 2017. All rights reserved. 8 J p | . nasa. gov



Model Architecture

Simple

Linear Cost
Model

K-Nearest
Neighbor

Mission
Descriptors

SLOC Range Estimate

COCOMO Multiplier
Range

Cocomo Il
Monte Carlo
Estimate

[HEi B N]

ot 3 COF (Rt resuge 59 16T)

Spectral

Clustering

Complete

Planned for
Delivery of
R1
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Effort
Estimate
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Key Analysis Components

COCOMOIl
Analysis

Cluster Regression

Analysis Analysis KNI

-Nearest
Neighbor
-Development
Cost/Effort

-Verified
Reproduction
-SLOC/
Cost/Effort

-Spectral -Linear
Clustering Regression
-Development -Development

Effort Estimate Estimate

» Cluster & Regression Analysis components listed rely on high level Mission Descriptors such
as # of Instruments and Mission Type

* Ref. System Parameters with Definitions and Examples
« COCOMOIl is a reproduction and uses traditional inputs
« KNN predicts the numerical target based on a similarity measure (e.g. distance)
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Model Performance Comparison

« Magnitude of Relative Error (MRE) as a metric for evaluating model performance:
MRE = (Predicted — Actual) / Actual

« MRE and Pure clustering
— Maedian distance between two clusters is best

» Produces lower over all MRE. Median MRE is not sensitive to outliers, and
therefore is more appropriate as a measure of the central tendency of a skewed
distribution

— Median measures always win

» Has implications for our commonly used regression based models which are
regression to the mean

« MRE used to measure against the performance of:
— Simple Linear Regression Model
— Spectral Clustering Model

March 29t 2017 © 2017. All rights reserved. 11 J p | . nasa. gov



MRE Results

« ASCoT Beta performs best. The smaller % percentage error does best.
« Cluster for each test cases is 3-4 data per cluster

2.60R T
2.408 === ASCoT Beta
2.208 |
2.00@+ === ASCoT Prototype
1.80@ h
I ===Regression Without
1.608T Instruments
14007 e==Regression With
§ 1.208 Instruments
= 1.00@7
0.80 |
0.60R |
0.400m T
0.20E |
0.00
1@ 20 3@ 4R 5E 6l 70

TEST CASES

oF 10@

11 12@
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MRE by Rank Order and

Maodel Yersion
Regression
Withouot Regression With
Instruments Instruments
4% 3%
9
9
3
3 5
% Y
35 57
Ly =

Median MRE 27 ]
Mean MRE S54% 52%
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ASCoT DEMO



Tool’s User Interface

Admin  Hello, Sok Chhong

ASCoA Clustering User Estimates
il ASCoT Clustering
Lreate New Estimate User Estimates
[ramr— =
————————— hoose Estimate
_ Project Name Software Size  This field is required. + This field is required.
ousoreronvaraton (R 9
3D Visualization Current Estimate ‘
Current Estimate
Cluster Detail Tables Inheritance j n Size j Estimated Effort:
{ Regression
Mission Type Sacondary Element Cluster Results Summary Estimated Effort:
777777777 — Cluster Members Effort
Redundancy Num Instruments
q Cluster Results Summary
Num Deployables  Conig 4 Cluster Members Effort

ASCoT Clustering

Create New Estimate

[ihl ASCoT Clustenri

Project Name Software Size
User Estimates. j
Cluster Parameter Variation Inheritance J Mission Size J
Cluﬁter Eﬂﬂﬂ Vaﬂa“on Mission Type Secondary Element
D Visualization
Redundancy Num Instruments

Cluster Detall Tables

Num Deployables Config

b Regression : j
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Cluster Estimating Results
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ASCoT Variation by Mission Descriptors

Parameter Variation for Test_Case_2 Effort: 668

Cluster 9 (Estimate Cluster)

] fosi_Came_2

sor Doeandl

Fregression

Cluster 1

-— GPM Core
ri . GLORY
Fi L MuStar
L GEMS_MMRE_1
' - Test Case I
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Mission Descriptors

March 29, 2017

Effort

Software Size
Inheritance

Mission Size

Secondary Element
Number of Instruments
Redundancy

Number of Deployments
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Regression Tool in ASCoT

Regression Anal

2D Plots by Fioht Boftware Coet
Mission Type
based on S/C

All Missicns Deep Space Missions Earth Orbiting / Lunar Missions
Cost . . .
x=S/C dev. Cost [ / . e
Y=SW Cost fo / Faii— P .

) / § -/ § /

§  FO IO . v .

F - =/ &

§ ; @ RalP

§ 2 = 33

3D rotational plot ,

x=S/C dev. Cost -
=# instruments

Z=SW dev. Cost
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Regression Analysis

« User input spacecraft cost to get All Missions
estimated software development
costs

« Linear regression trend line

« Phase B-D Costs

Software Development Cost, FY16%$

0 0.5B 1B

Total Spacecraft Cost, FY16%
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More References and Readings

« If you're interested in reading more about this and want to see more detailed methodology,
performance and model, please contact Dr. Jairus Hihn at Jairus.m.hihn@jpl.nasa.gov
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Questions

« Acknowledgements
— Dr. Jairus Hihn, JPL, Group Supervisor
— James Johnson, NASA HQ, Strategic Investment Division
— Elinor Huntington, JPL
— Alex Lumnah, JPL
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Author’s Note

»  Proper credit of third party cited references/materials has been cited and obtained with permission
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Data Mining Methods

« Data mining techniques provided us with the rigorous tool set
« we needed to explore the many dimension of the problem we
« were addressing in a repeatable manner

— Analyze standard and non-standard models

* |s there a best functional form

» Perform exhaustive searches over all parameters and
* records in order to guide data pruning

— Rows (Stratification)

— Columns (variable reduction)
 Measure model performance by multiple measures

— R?, MRE, Pred, F-test, etc.
* Is there a ‘best’ way to tune or calibrate a model

March 29t 2017 © 2017. All rights reserved.
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Spectral Clustering

PCA finds eigenvectors in numerical data
Spectral Clustering

— Spectral Clustering is like PCA on steroids but uses an eigenvector
approximation method

— Recursively splits the data on synthesized dimension of greatest
variance/spread

Why use it
— Can handle numerical and symbolic data

— Can work on small, sparse and somewhat noisy data sets but also works
well on large consistent data sets

— Can use as estimator with partial information

March 29t 2017 © 2017. All rights reserved. 25 J p | . nasa. gov



Effort Estimation with Data Mining Methods References
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